skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1839313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Coulomb collisions provide plasma resistivity and diffusion but in many low-density astrophysical plasmas such collisions between particles are extremely rare. Scattering of particles by electromagnetic waves can lower the plasma conductivity. Such anomalous resistivity due to wave-particle interactions could be crucial to many processes, including magnetic reconnection. It has been suggested that waves provide both diffusion and resistivity, which can support the reconnection electric field, but this requires direct observation to confirm. Here, we directly quantify anomalous resistivity, viscosity, and cross-field electron diffusion associated with lower hybrid waves using measurements from the four Magnetospheric Multiscale (MMS) spacecraft. We show that anomalous resistivity is approximately balanced by anomalous viscosity, and thus the waves do not contribute to the reconnection electric field. However, the waves do produce an anomalous electron drift and diffusion across the current layer associated with magnetic reconnection. This leads to relaxation of density gradients at timescales of order the ion cyclotron period, and hence modifies the reconnection process. 
    more » « less
  3. A first search for beyond the standard model physics in jet multiplicity patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of 138 fb 1 of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic R -parity violating interactions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  4. Abstract Pc5 ultralow frequency waves are important for transferring energy between the magnetosphere and ionosphere. While many observations have been performed on Pc5 waves properties, it has been difficult to determine the source region, signal propagation path, and the two‐dimensional structure of Pc5 waves beyond coverage by a small number of satellites. Pc5 waves often show a dawn‐dusk asymmetry, but the cause of the asymmetry is under debate. To address these issues, we used conjunction events between the THEMIS satellites and all‐sky imagers and analyzed two Pc5 wave events that were stronger on the dawnside. For both events, the Pc5 waves propagated from dawnside magnetopause toward the nightside magnetosphere. The Pc5 waves were also associated with dawnside magnetopause surface waves, which were probably induced by the Kelvin‐Helmholtz instability. The ionospheric equivalent currents identified multiple vortices on the dawnside associated with quasi‐periodic auroral arcs and much weaker perturbations on the duskside. Global auroral imaging also presented a similar dawn‐dusk asymmetry with multiple arcs on the dawnside, while only one or two major arcs existed on the duskside. Pc5 waves in the magnetosphere had an anti‐phase relation between the total magnetic field and thermal pressure, with a slower propagation velocity compared with magnetohydrodynamic waves. The Poynting flux was anti‐sunward with an oscillating field‐aligned component. These properties suggest that Pc5 waves were slow or drift mirror mode waves coupled with standing Alfven waves. The ground‐based and multi‐satellite observations provide crucial information for determining the Pc5 waves properties, possible source region, and signal propagation path. 
    more » « less
  5. Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5 d -electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO 3 . We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO 3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO 3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO 3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 d transition-metal oxide thin films can be an ideal building block for low-power spintronics. 
    more » « less
  6. A search for the rare decay D 0 μ + μ is reported using proton-proton collision events at s = 13.6 TeV collected by the CMS detector in 2022–2023, corresponding to an integrated luminosity of 64.5 fb 1 . This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D 0 mesons obtained from D * + D 0 π + decays. No significant excess is observed. A limit on the branching fraction of B ( D 0 μ + μ ) < 2.4 × 10 9 at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  7. A<sc>bstract</sc> A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg → A, and in association with bottom quarks,$$\text{b}\overline{\text{b}}\text{A }$$. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb−1collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of$$\sqrt{s}=13$$TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A → Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg → A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the$$\text{b}\overline{\text{b}}\text{A }$$process in the probed range of the A boson mass,mA, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the$${\text{M}}_{\text{h},\text{EFT}}^{125}$$benchmark scenario of the minimal supersymmetric extension of the standard model. Values of tanβbelow 2.2 are excluded in this scenario at 95% confidence level for allmAvalues in the range from 225 to 350 GeV. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  8. Free, publicly-accessible full text available September 1, 2026
  9. Free, publicly-accessible full text available September 1, 2026